Skip to content
Home
Engineered odorant receptors illuminate the basis of odour discrimination
- Buck, L. & Axel, R. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65, 175–187 (1991).
- CAS PubMed MATH Google Scholar
- Glusman, G., Yanai, I., Rubin, I. & Lancet, D. The complete human olfactory subgenome. Genome Res. 11, 685–702 (2001).
- CAS PubMed MATH Google Scholar
- Ikegami, K. et al. Structural instability and divergence from conserved residues underlie intracellular retention of mammalian odorant receptors. Proc. Natl Acad. Sci. USA 117, 2957–2967 (2020).
- ADS CAS PubMed PubMed Central MATH Google Scholar
- Malnic, B., Godfrey, P. A. & Buck, L. B. The human olfactory receptor gene family. Proc. Natl Acad Sci. USA 101, 2584–2589 (2004).
- ADS CAS PubMed PubMed Central Google Scholar
- Bjarnadóttir, T. K. et al. Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse. Genomics 88, 263–273 (2006).
- PubMed MATH Google Scholar
- Liberles, S. D. & Buck, L. B. A second class of chemosensory receptors in the olfactory epithelium. Nature 442, 645–650 (2006).
- ADS CAS PubMed Google Scholar
- Olender, T., Jones, T. E. M., Bruford, E. & Lancet, D. A unified nomenclature for vertebrate olfactory receptors. BMC Evol. Biol. 20, 42 (2020).
- CAS PubMed PubMed Central Google Scholar
- Malnic, B., Hirono, J., Sato, T. & Buck, L. B. Combinatorial receptor codes for odors. Cell 96, 713–723 (1999).
- CAS PubMed Google Scholar
- Saito, H., Chi, Q., Zhuang, H., Matsunami, H. & Mainland, J. D. Odor coding by a mammalian receptor repertoire. Sci. Signal. 2, ra9 (2009).
- PubMed PubMed Central Google Scholar
- Cichy, A., Shah, A., Dewan, A., Kaye, S. & Bozza, T. Genetic depletion of class I odorant receptors impacts perception of carboxylic acids. Curr. Biol. 29, 2687–2697.e4 (2019).
- CAS PubMed PubMed Central Google Scholar
- Dewan, A., Pacifico, R., Zhan, R., Rinberg, D. & Bozza, T. Non-redundant coding of aversive odours in the main olfactory pathway. Nature 497, 486–489 (2013).
- ADS CAS PubMed PubMed Central Google Scholar
- Niimura, Y. On the origin and evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species. Genome Biol. Evol. 1, 34–44 (2009).
- PubMed PubMed Central MATH Google Scholar
- Bear, D. M., Lassance, J.-M., Hoekstra, H. E. & Datta, S. R. The evolving neural and genetic architecture of vertebrate olfaction. Curr. Biol. 26, R1039–R1049 (2016).
- CAS PubMed PubMed Central Google Scholar
- Freitag, J., Krieger, J., Strotmann, J. & Breer, H. Two classes of olfactory receptors in Xenopus laevis. Neuron 15, 1383–1392 (1995).
- CAS PubMed Google Scholar
- Billesbølle, C. B. et al. Structural basis of odorant recognition by a human odorant receptor. Nature 615, 742–749 (2023).
- ADS PubMed PubMed Central MATH Google Scholar
- Guo, L. et al. Structural basis of amine odorant perception by a mammal olfactory receptor. Nature 618, 193–200 (2023).
- ADS CAS PubMed MATH Google Scholar
- Shang, P. et al. Structural and signaling mechanisms of TAAR1 enabled preferential agonist design. Cell 186, 5347–5362.e24 (2023).
- CAS PubMed MATH Google Scholar
- Xu, Z. et al. Ligand recognition and G-protein coupling of trace amine receptor TAAR1. Nature 624, 672–681 (2023).
- ADS CAS PubMed MATH Google Scholar
- Liu, H. et al. Recognition of methamphetamine and other amines by trace amine receptor TAAR1. Nature 624, 663–671 (2023).
- ADS CAS PubMed MATH Google Scholar
- Gusach, A. et al. Molecular recognition of an odorant by the murine trace amine-associated receptor TAAR7f. Nat. Commun. 15, 7555 (2024).
- CAS PubMed PubMed Central MATH Google Scholar
- Lu, M., Echeverri, F. & Moyer, B. D. Endoplasmic reticulum retention, degradation, and aggregation of olfactory G-protein coupled receptors. Traffic 4, 416–433 (2003).
- CAS PubMed Google Scholar
- Saito, H., Kubota, M., Roberts, R. W., Chi, Q. & Matsunami, H. RTP family members induce functional expression of mammalian odorant receptors. Cell 119, 679–691 (2004).
- CAS PubMed Google Scholar
- Zhuang, H. & Matsunami, H. Evaluating cell-surface expression and measuring activation of mammalian odorant receptors in heterologous cells. Nat. Protoc. 3, 1402–1413 (2008).
- CAS PubMed PubMed Central MATH Google Scholar
- Noe, F. et al. IL-6-HaloTag® enables live-cell plasma membrane staining, flow cytometry, functional expression, and de-orphaning of recombinant odorant receptors. J. Biol. Methods 4, e81 (2017).
- PubMed PubMed Central MATH Google Scholar
- Sternke, M., Tripp, K. W. & Barrick, D. Consensus sequence design as a general strategy to create hyperstable, biologically active proteins. Proc. Natl Acad. Sci. USA 116, 11275–11284 (2019).
- ADS CAS PubMed PubMed Central MATH Google Scholar
- Desjarlais, J. R. & Berg, J. M. Use of a zinc-finger consensus sequence framework and specificity rules to design specific DNA binding proteins. Proc. Natl Acad. Sci. USA 90, 2256–2260 (1993).
- ADS CAS PubMed PubMed Central MATH Google Scholar
- Porebski, B. T. & Buckle, A. M. Consensus protein design. Protein Eng. Des. Sel. 29, 245–251 (2016).
- CAS PubMed PubMed Central MATH Google Scholar
- Steipe, B., Schiller, B., Plückthun, A. & Steinbacher, S. Sequence statistics reliably predict stabilizing mutations in a protein domain. J. Mol. Biol. 240, 188–192 (1994).
- CAS PubMed Google Scholar
- Lehmann, M. et al. From DNA sequence to improved functionality: using protein sequence comparisons to rapidly design a thermostable consensus phytase. Protein Eng. 13, 49–57 (2000).
- CAS PubMed MATH Google Scholar
- Choi, C. et al. Understanding the molecular mechanisms of odorant binding and activation of the human OR52 family. Nat. Commun. 14, 8105 (2023).
- ADS CAS PubMed PubMed Central MATH Google Scholar
- Nehmé, R. et al. Mini-G proteins: novel tools for studying GPCRs in their active conformation. PLoS ONE 12, e0175642 (2017).
- PubMed PubMed Central Google Scholar
- Ballesteros, J. A. & Weinstein, H. in Methods in Neurosciences Vol. 25 (ed. Sealfon, S. C.) 366–428 (Academic Press, 1995).
- de March, C. A., Kim, S.-K., Antonczak, S., Goddard, W. A. 3rd & Golebiowski, J. G protein-coupled odorant receptors: from sequence to structure. Protein Sci. 24, 1543–1548 (2015).
- PubMed PubMed Central Google Scholar
- Isberg, V. et al. Generic GPCR residue numbers—aligning topology maps while minding the gaps. Trends Pharmacol. Sci. 36, 22–31 (2015).
- CAS PubMed Google Scholar
- de March, C. A. et al. Conserved residues control activation of mammalian G protein-coupled odorant receptors. J. Am. Chem. Soc. 137, 8611–8616 (2015).
- PubMed PubMed Central MATH Google Scholar
- Pluznick, J. L. et al. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc. Natl Acad. Sci. USA 110, 4410–4415 (2013).
- ADS CAS PubMed PubMed Central MATH Google Scholar
- Shayya, H. J. et al. ER stress transforms random olfactory receptor choice into axon targeting precision. Cell 185, 3896–3912.e22 (2022).
- CAS PubMed PubMed Central MATH Google Scholar
- Mainland, J. D., Li, Y. R., Zhou, T., Liu, W. L. L. & Matsunami, H. Human olfactory receptor responses to odorants. Sci. Data 2, 150002 (2015).
- CAS PubMed PubMed Central Google Scholar
- Kajiya, K. et al. Molecular bases of odor discrimination: reconstitution of olfactory receptors that recognize overlapping sets of odorants. J. Neurosci. 21, 6018–6025 (2001).
- CAS PubMed PubMed Central MATH Google Scholar
- Grosmaitre, X. et al. SR1, a mouse odorant receptor with an unusually broad response profile. J. Neurosci. 29, 14545–14552 (2009).
- CAS PubMed PubMed Central MATH Google Scholar
- Schmiedeberg, K. et al. Structural determinants of odorant recognition by the human olfactory receptors OR1A1 and OR1A2. J. Struct. Biol. 159, 400–412 (2007).
- CAS PubMed MATH Google Scholar
- Geithe, C., Noe, F., Kreissl, J. & Krautwurst, D. The broadly tuned odorant receptor OR1A1 is highly selective for 3-methyl-2,4-nonanedione, a key food odorant in aged wines, tea, and other foods. Chem. Senses 42, 181–193 (2017).
- CAS PubMed Google Scholar
- Ma, N., Lee, S. & Vaidehi, N. Activation microswitches in adenosine receptor A2A function as rheostats in the cell membrane. Biochemistry 59, 4059–4071 (2020).
- CAS PubMed MATH Google Scholar
- Dror, R. O. et al. Activation mechanism of the β2-adrenergic receptor. Proc. Natl Acad. Sci. USA 108, 18684–18689 (2011).
- ADS CAS PubMed PubMed Central MATH Google Scholar
- Lee, S., Nivedha, A. K., Tate, C. G. & Vaidehi, N. Dynamic role of the G protein in stabilizing the active state of the adenosine A2A receptor. Structure 27, 703–712.e3 (2019).
- CAS PubMed PubMed Central Google Scholar
- Li, Q. et al. Non-classical amine recognition evolved in a large clade of olfactory receptors. eLife 4, e10441 (2015).
- PubMed PubMed Central Google Scholar
- Del Mármol, J., Yedlin, M. A. & Ruta, V. The structural basis of odorant recognition in insect olfactory receptors. Nature 597, 126–131 (2021).
- ADS PubMed PubMed Central Google Scholar
- Butterwick, J. A. et al. Cryo-EM structure of the insect olfactory receptor Orco. Nature 560, 447–452 (2018).
- ADS CAS PubMed PubMed Central Google Scholar
- Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
- ADS CAS PubMed PubMed Central MATH Google Scholar
- Bender, B. J., Marlow, B. & Meiler, J. Improving homology modeling from low-sequence identity templates in Rosetta: a case study in GPCRs. PLoS Comput. Biol. 16, e1007597 (2020).
- ADS CAS PubMed PubMed Central MATH Google Scholar
- Rutherford, S. L. & Lindquist, S. Hsp90 as a capacitor for morphological evolution. Nature 396, 336–342 (1998).
- ADS CAS PubMed MATH Google Scholar
- Wyganowski, K. T., Kaltenbach, M. & Tokuriki, N. GroEL/ES buffering and compensatory mutations promote protein evolution by stabilizing folding intermediates. J. Mol. Biol. 425, 3403–3414 (2013).
- CAS PubMed Google Scholar
- Agozzino, L. & Dill, K. A. Protein evolution speed depends on its stability and abundance and on chaperone concentrations. Proc. Natl Acad. Sci. USA 115, 9092–9097 (2018).
- ADS CAS PubMed PubMed Central MATH Google Scholar
- Faust, B. et al. Autoantibody mimicry of hormone action at the thyrotropin receptor. Nature 609, 846–853 (2022).
- Mastronarde, D. N. SerialEM: a program for automated tilt series acquisition on Tecnai microscopes using prediction of specimen position. Microsc. Microanal. 9, 1182–1183 (2003).
- ADS MATH Google Scholar
- Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017).
- CAS PubMed PubMed Central MATH Google Scholar
- Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017).
- CAS PubMed Google Scholar
- Asarnow, D., Palovcak, E. & Cheng, Y. asarnow/pyem: UCSF Pyem v0.5. Zenodo https://doi.org/10.5281/zenodo.3576630 (2019).
- Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
- CAS PubMed MATH Google Scholar
- Scheres, S. H. W. RELION: implementation of a Bayesian approach to cryo-EM structure determination. J. Struct. Biol. 180, 519–530 (2012).
- CAS PubMed PubMed Central MATH Google Scholar
- Bushdid, C., de March, C. A., Matsunami, H. & Golebiowski, J. Numerical models and in vitro assays to study odorant receptors. Methods Mol. Biol. 1820, 77–93 (2018).
- CAS PubMed Google Scholar
- Zhang, Y., Pan, Y., Matsunami, H. & Zhuang, H. Live-cell measurement of odorant receptor activation using a real-time cAMP assay. J. Vis. Exp. 128, 55831 (2017).
- Google Scholar
- Berendsen, H. J. C., van der Spoel, D. & van Drunen, R. GROMACS: a message-passing parallel molecular dynamics implementation. Comput. Phys. Commun. 91, 43–56 (1995).
- ADS CAS Google Scholar
- Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017).
- CAS PubMed MATH Google Scholar
- Vanommeslaeghe, K. et al. CHARMM general force field: a force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. J. Comput. Chem. 31, 671–690 (2010).
- CAS PubMed PubMed Central Google Scholar
- Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).
- CAS PubMed Google Scholar
- Jo, S., Lim, J. B., Klauda, J. B. & Im, W. CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. Biophys. J. 97, 50–58 (2009).
- ADS CAS PubMed PubMed Central Google Scholar
- Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012).
- CAS PubMed Google Scholar
- Parrinello, M. & Rahman, A. Polymorphic transitions in single crystals: a new molecular dynamics method. J. Appl. Phys. 52, 7182–7190 (1981).
- ADS CAS MATH Google Scholar
- Darden, T., York, D. & Pedersen, L. Particle mesh Ewald: an N⋅log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993).
- ADS CAS MATH Google Scholar
- Pagès, H., Aboyoun, P., Gentleman, R. & DebRoy, S. Biostrings: Efficient manipulation of biological strings. R package version 2.72.1 https://bioconductor.org/packages/Biostrings (2022).
- Charif, D. & Lobry, J. R. in Structural Approaches to Sequence Evolution: Molecules, Networks, Populations (eds Bastolla, U. et al.) 207–232 (Springer Berlin Heidelberg, 2007).
- Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
- CAS PubMed MATH Google Scholar
- Xu, S. et al. Ggtree: a serialized data object for visualization of a phylogenetic tree and annotation data. iMeta 1, e56 (2022).
- PubMed PubMed Central MATH Google Scholar
- Crooks, G. E., Hon, G., Chandonia, J.-M. & Brenner, S. E. WebLogo: a sequence logo generator. Genome Res. 14, 1188–1190 (2004).
- CAS PubMed PubMed Central Google Scholar
- Dang, S. et al. Cryo-EM structures of the TMEM16A calcium-activated chloride channel. Nature 552, 426–429 (2017).
- ADS CAS PubMed PubMed Central MATH Google Scholar